Portfolio

My Blog

The outline of what we do in this site

Friday, July 25, 2014

Central University of Jharkhand - Even Semester Results


Even Semester Result-2014
1. Centre for Business Administration- Xth Semester
2. Centre for English Studies-Xth Semester
3. Centre for Land Resource Management -IV Semester (2 Years)
4. CENTRE FOR EDUCATION (BABED) - SEMESTER - II
5. CENTRE FOR ENVIRONMENTAL SCIENCES-SEMESTER- IV
6. CENTRE FOR FAR EAST LANGUAGE-CHINESE-SEMESTER-II,SEMESTER-IV
7. CENTRE FOR APPLIED CHEMISTRY-SEMESTER-IV,SEMESTER-VI,SEMESTER-VIII
8. CENTRE FOR LIFE SCIENCES-SEMESTER-IV,SEMESTER-VI
9. CENTRE FOR BUSINESS ADMINISTRATION -SEMESTER -II,SEMESTER-IV,SEMESTER- VI,SEMESTER -VIII
10. CENTRE FOR MASS COMMUNICATION-SEMESTER-II,SEMESTER-IV,SEMESTER-VIII
11. CENTRE FOR NANOTECHNOLOGY-SEMESTER-IV ,SEMESTER-VI,SEMESTER-VIII
12. CENTRE FOR WATER ENGINEERING AND MANAGEMENT-SEMESTER-IV,SEMESTER-VI,SEMESTER-VIII
13. CENTRE FOR LAND RESOURCE MANAGEMENT-SEMESTER-II,M.Sc. SEMESTER-IV
14. CENTRE FOR EDUCATION (BSCBED) SEMESTER-II
15. BPA-SEMESTER-II
16. FEL (Korean) 1st Sem ertificate Course 12- 2013
17. FEL (Korean) 1st Sem ertificate Course 2013
18. FELK 2nd Semester 2014
19. FELK 4th Semester 2014
20. FELK Diploma 2nd Semester 2012- 13 batch
21. FELK Diploma 2nd Semester 2013- 14 batch
22. FELT 2nd Even Sem 2014 Notice Board
23. Geoinformatics 2nd SEM M.Sc
24. IAC 2nd Even Sem 2014
25. IAM 2nd Sem Even 2014
26. IAM 4th Sem Even 2014
27. IAM 6th Sem 2014
28. IAM 8th Sem 2014
29. IAP 2nd Even Sem 2014
30. IAP 4th Even Sem 2014
31. IAP 8th Even Sem 2014
32. ICS 8th Even Sem 2014
33. IEE 2nd Even Sem 2014
34. IEE 4th Even Sem 2014
35. IEE 6th Even Sem 2014
36. IEN 2nd Even Sem 2014
37. IEN 4th Even Sem 2014
38. IEN 6th Even Sem 2014
39. IEN 8th Even Sem 2014
40. ILS 2nd Even Sem 2014
41. ILS 8th Even Sem 2014
42. INT 2nd Even Sem 2014
43. IR 2nd Sem 2014
44. IR 4th Sem 2014
45. IWEM 2nd Even Sem 2014
46. LRM 2nd SEM 5yr Integrated
47. IAM X sem 2014
48. HRCM 2nd Sem 2014
49. IMC X sem 2014
50. IMC VI sem 2014
51. ICS II Sem
52. ICS IV Sem
53. ICS VI Sem
54. Mobile Computing II Sem

Source : www.cuj.ac.in

Steam energy from the sun: New spongelike structure converts solar energy into steam

July 24, 2014
A new material structure generates steam by soaking up the sun. The structure -- a layer of graphite flakes and an underlying carbon foam -- is a porous, insulating material structure that floats on water. When sunlight hits the structure's surface, it creates a hotspot in the graphite, drawing water up through the material's pores, where it evaporates as steam. The brighter the light, the more steam is generated.

The new material is able to convert 85 percent of incoming solar energy into steam -- a significant improvement over recent approaches to solar-powered steam generation. What's more, the setup loses very little heat in the process, and can produce steam at relatively low solar intensity. This would mean that, if scaled up, the setup would likely not require complex, costly systems to highly concentrate sunlight.
Hadi Ghasemi, a postdoc in MIT's Department of Mechanical Engineering, says the spongelike structure can be made from relatively inexpensive materials -- a particular advantage for a variety of compact, steam-powered applications.
"Steam is important for desalination, hygiene systems, and sterilization," says Ghasemi, who led the development of the structure. "Especially in remote areas where the sun is the only source of energy, if you can generate steam with solar energy, it would be very useful."
Ghasemi and mechanical engineering department head Gang Chen, along with five others at MIT, report on the details of the new steam-generating structure in the journal Nature Communications.
Cutting the optical concentration
Today, solar-powered steam generation involves vast fields of mirrors or lenses that concentrate incoming sunlight, heating large volumes of liquid to high enough temperatures to produce steam. However, these complex systems can experience significant heat loss, leading to inefficient steam generation.
Recently, scientists have explored ways to improve the efficiency of solar-thermal harvesting by developing new solar receivers and by working with nanofluids. The latter approach involves mixing water with nanoparticles that heat up quickly when exposed to sunlight, vaporizing the surrounding water molecules as steam. But initiating this reaction requires very intense solar energy -- about 1,000 times that of an average sunny day.
By contrast, the MIT approach generates steam at a solar intensity about 10 times that of a sunny day -- the lowest optical concentration reported thus far. The implication, the researchers say, is that steam-generating applications can function with lower sunlight concentration and less-expensive tracking systems.
"This is a huge advantage in cost-reduction," Ghasemi says. "That's exciting for us because we've come up with a new approach to solar steam generation."
From sun to steam
The approach itself is relatively simple: Since steam is generated at the surface of a liquid, Ghasemi looked for a material that could both efficiently absorb sunlight and generate steam at a liquid's surface.
After trials with multiple materials, he settled on a thin, double-layered, disc-shaped structure. Its top layer is made from graphite that the researchers exfoliated by placing the material in a microwave. The effect, Chen says, is "just like popcorn": The graphite bubbles up, forming a nest of flakes. The result is a highly porous material that can better absorb and retain solar energy.
The structure's bottom layer is a carbon foam that contains pockets of air to keep the foam afloat and act as an insulator, preventing heat from escaping to the underlying liquid. The foam also contains very small pores that allow water to creep up through the structure via capillary action.
As sunlight hits the structure, it creates a hotspot in the graphite layer, generating a pressure gradient that draws water up through the carbon foam. As water seeps into the graphite layer, the heat concentrated in the graphite turns the water into steam. The structure works much like a sponge that, when placed in water on a hot, sunny day, can continuously absorb and evaporate liquid.
The researchers tested the structure by placing it in a chamber of water and exposing it to a solar simulator -- a light source that simulates various intensities of solar radiation. They found they were able to convert 85 percent of solar energy into steam at a solar intensity 10 times that of a typical sunny day.
Ghasemi says the structure may be designed to be even more efficient, depending on the type of materials used.
"There can be different combinations of materials that can be used in these two layers that can lead to higher efficiencies at lower concentrations," Ghasemi says. "There is still a lot of research that can be done on implementing this in larger systems."


Copper nanowires could become basis for new solar cells

April 23, 2014
By looking at a piece of material in cross section, engineers discovered how copper sprouts grass-like nanowires that could one day be made into solar cells. The researchers worked with copper foil, a simple material similar to household aluminum foil. When most metals are heated, they form a thick metal oxide film. However, a few metals, such as copper, iron and zinc, grow grass-like structures known as nanowires, which are long, cylindrical structures a few hundred nanometers wide by many microns tall. They set out to determine how the nanowires grow.

Banerjee, assistant professor of materials science and an expert in working with nanomaterials, Fei Wu, graduate research assistant, and Yoon Myung, PhD, a postdoctoral research associate, also took a step toward making solar cells and more cost-effective.
Banerjee and his team worked with copper foil, a simple material similar to household aluminum foil. When most metals are heated, they form a thick metal oxide film. However, a few metals, such as copper, iron and zinc, grow grass-like structures known as nanowires, which are long, cylindrical structures a few hundred nanometers wide by many microns tall. They set out to determine how the nanowires grow.
"Other researchers look at these wires from the top down," Banerjee says. "We wanted to do something different, so we broke our sample and looked at it from the side view to see if we got different information, and we did."
Results of the research were recently published in CrystEngComm. Washington University's International Center for Advanced Renewable Energy & Sustainability (I-CARES) and the McDonnell Academy Global Energy and Environment Partnership (MAGEEP) provided funding for the research.
The team used Raman spectroscopy, a technique that uses light from a laser beam to interact with molecular vibrations or other movements. They found an underlying thick film made up of two different copper oxides (CuO and Cu2O) that had narrow, vertical columns of grains running through them. In between these columns, they found grain boundaries that acted as arteries through which the copper from the underlying layer was being pushed through when heat was applied, creating the nanowires.
"We're now playing with this ionic transport mechanism, turning it on and off and seeing if we can get some different forms of wires," says Banerjee, who runs the Laboratory for Emerging and Applied Nanomaterials (L.E.A.N.).
Like solar cells, the nanowires are single crystal in structure, or a continuous piece of material with no grain boundaries, Banerjee says.
"If we could take these and study some of the basic optical and electronic properties, we could potentially make solar cells," he says. "In terms of optical properties, copper oxides are well-positioned to become a solar energy harvesting material."
The find may also benefit other engineers who want to use single crystal oxides in scientific research. Manufacturing single crystal Cu2O for research is very expensive, Banerjee says, costing up to about $1,500 for one crystal.
"But if you can live with this form that's a long wire instead of a small crystal, you can really use it to study basic scientific phenomena," Banerjee says.
Banerjee's team also is looking for other uses for the nanowires, including acting as a semiconductor between two materials, as a photocatalyst, a photovoltaic or an electrode for splitting water.

Atomic switcheroo explains origins of thin-film solar cell mystery

April 23, 2014
Treating cadmium-telluride (CdTe) solar cell materials with cadmium-chloride improves their efficiency, but researchers have not fully understood why.Now, an atomic-scale examination of the thin-film solar cells led by the Department of Energy's Oak Ridge National Laboratory has answered this decades-long debate about the materials' photovoltaic efficiency increase after treatment.
A research team from ORNL, the University of Toledo and DOE's National Renewable Energy Laboratory used electron microscopy and computational simulations to explore the physical origins of the unexplained treatment process. The results are published in Physical Review Letters (PRL).
Thin-film CdTe solar cells are considered a potential rival to silicon-based photovoltaic systems because of their theoretically low cost per power output and ease of fabrication. Their comparatively low historical efficiency in converting sunlight into energy, however, has limited the technology's widespread use, especially for home systems.
Research in the 1980s showed that treating CdTe thin films with cadmium-chloride significantly raises the cell's efficiency, but scientists have been unable to determine the underlying causes. ORNL's Chen Li, first author on the PRL study, explains that the answer lay in investigating the material at an atomic level.
"We knew that chlorine was responsible for this magical effect, but we needed to find out where it went in the material's structure," Li said. "Only by understanding the structure can we understand what's wrong in this solar cell -- why the efficiency is not high enough, and how can we push it further."
By comparing the solar cells before and after chlorine treatment, the researchers realized that atom-scale grain boundaries were implicated in the enhanced performance. Grain boundaries are tiny defects that that normally act as roadblocks to efficiency, because they inhibit carrier collection which greatly reduces the solar cell power.
Using state of the art electron microscopy techniques to study the thin films' structure and chemical composition after treatment, the researchers found that chlorine atoms replaced tellurium atoms within the grain boundaries. This atomic substitution creates local electric fields at the grain boundaries that boost the material's photovoltaic performance instead of damaging it.
The research team's finding, in addition to providing a long-awaited explanation, could be used to guide engineering of higher-efficiency CdTe solar cells. Controlling the grain boundary structure, says Li, is a new direction that could help raise the cell efficiencies closer to the theoretical maximum of 32 percent light-to-energy conversion. Currently, the record CdTe cell efficiency is only 20.4 percent.
"We think that if all the grain boundaries in a thin film material could be aligned in same direction, it could improve cell efficiency even further," Li said.

Story Source:   Oak Ridge National Laboratory.

Synthesized 'solar' jet fuel: Renewable kerosene from sunlight, water and carbon dioxide

May 3, 2014
With the first ever production of synthesized "solar" jet fuel, the EU-funded SOLAR-JET project has successfully demonstrated the entire production chain for renewable kerosene obtained directly from sunlight, water and carbon dioxide, therein potentially revolutionizing the future of aviation. This process has also the potential to produce any other type of fuel for transport applications, such as diesel, gasoline or pure hydrogen in a more sustainable way.
Several notable research organizations from academia through to industry (ETH Zürich, Bauhaus Luftfahrt, Deutsches Zentrum für Luft- und Raumfahrt (DLR), ARTTIC and Shell Global Solutions) have explored a thermochemical pathway driven by concentrated solar energy. A new solar reactor technology has been pioneered to produce liquid hydrocarbon fuels suitable for more sustainable transportation.
"Increasing environmental and supply security issues are leading the aviation sector to seek alternative fuels which can be used interchangeably with today's jet fuel, so-called drop-in solutions," states Dr. Andreas Sizmann, the project coordinator at Bauhaus Luftfahrt. "With this first-ever proof-of-concept for 'solar' kerosene, the SOLAR-JET project has made a major step towards truly sustainable fuels with virtually unlimited feedstocks in the future.
The SOLAR-JET project demonstrated an innovative process technology using concentrated sunlight to convert carbon dioxide and water to a so-called synthesis gas (syngas). This is accomplished by means of a redox cycle with metal-oxide based materials at high temperatures. The syngas, a mixture of hydrogen and carbon monoxide, is finally converted into kerosene by using commercial Fischer-Tropsch technology.
"The solar reactor technology features enhanced radiative heat transfer and fast reaction kinetics, which are crucial for maximizing the solar-to-fuel energy conversion efficiency" said Professor Aldo Steinfeld, leading the fundamental research and development of the solar reactor at ETH Zürich.
Although the solar-driven redox cycle for syngas production is still at an early stage of development, the processing of syngas to kerosene is already being deployed by companies, including Shell, on a global scale. This combined approach has the potential to provide a secure, sustainable and scalable supply of renewable aviation fuel and more generally for transport applications. Moreover, Fischer-Tropsch derived kerosene is already approved for commercial aviation.
"This is potentially a very interesting novel pathway to liquid hydrocarbon fuels using focussed solar power," said Professor Hans Geerlings at Shell. "Although the individual steps of the process have previously been demonstrated at various scales, no attempt had been made previously to integrate the end-to-end system. We look forward to working with the project partners to drive forward research and development in the next phase of the project on such an ambitious emerging technology."
SOLAR-JET (Solar chemical reactor demonstration and Optimization for Long-term Availability of Renewable JET fuel) was launched in June 2011 and is receiving financial support from the European Union within the 7th Framework Programme for a duration of four years. In a first step, the technical feasibility of producing solar kerosene was proven. In the next phase of the project, the partners will optimise the solar reactor and assess the techno-economic potential of industrial scale implementation. The outcomes of SOLAR-JET will put Europe to the forefront of research, innovation and production of sustainable fuels directly from concentrated solar energy.

Story Source:  ETH Zürich


Major advances in dye sensitized solar cells

April 22, 2014
Two groups of researchers have recently advanced the field of solar cells with a cheaper and efficient replacement for platinum and better synthesis of zinc oxide. Working on dye-sensitized solar cells -- researchers in Malaysia have achieved an efficiency of 1.12%, at a fraction of the cost compared to those used by platinum devices.

Working on dye-sensitized solar cells -- researchers from University Malaya (UM) and National Tsing Hua University (NTHU) have achieved an efficiency of 1.12 %, at a fraction of the cost compared to those used by platinum devices.
This work has been accepted for publication in the journal, Nanoscale published by the Royal Society of Chemistry and has been selected for the front cover of the issue.
The study carried out in Taiwan took on the challenge of making the technology behind dye-sensitized solar cells more affordable by replacing the costly platinum counter-electrodes with bismuth telluride (Bi2Te3) nanosheet arrays.
Using a novel electrolysis process, the group managed to closely manipulate the spacing between individual nanosheets and hence control the thermal and electrical conductivity parameters to achieve the high efficiency of 1.12%, which is comparable to platinum devices, but at only at a fraction of the cost.
The research was led by Prof. Yu-Lun Chueh of the Nanoscience & Nanodevices Laboratory, NTHU, and Alireza Yaghoubi, UM HIR Young Scientist. "In light of the recent report by the United Nations about the irreversible effects of fossil fuels on climate change and as we gradually run out of economically recoverable oil reserves, we think it is necessary to look for a sustainable, yet practical source of energy" Yaghoubi stated.
Meanwhile at University Malaya, Dr. Wee Siong Chiu and colleagues were working on controlling the secondary nucleation and self-assembly in zinc oxide (ZnO), a material which is currently being scrutinized for its potential applications in dye-sensitized solar cells as well as photocatalytic reactions to generate clean electricity by splitting water under sunlight.
In this work, Dr. Chiu and Alireza Yaghoubi demonstrated a new route for synthesis of various zinc oxide nanostructures using the lipophilic interactions between a novel precursor and a number of fatty acids. They are hoping to further use this method to increase the efficiency of photocatalysts in the visible regime where most of the sunlight energy lies.
According to the researchers, if this approach is successful, generating electricity is as easy as pouring some bioinert nanomaterials into a lake and fusing the split oxygen and hydrogen atoms back into water in a photoelectrochemical cell.

Story Source: University of Malaya

Saturday, May 10, 2014

World’s Largest Solar Array Set to Crank Out 290 Megawatts of Sunshine Power

May 9, 2014
Global climate change is here, and it’s only going to get worse, according to a White House report released on Tuesday. To combat rising sea levels and blistering summers, the Obama administration has been pushing for clean, renewable energy sources that cut down on carbon emissions. Now one of its projects is poised to pan out: Agua Caliente, the largest photovoltaic solar power facility in the world, was completed last week in Arizona.

The plant comprises more than five million solar panels that span the equivalent of two Central Parks in the desert between Yuma and Phoenix. It generates 290 megawatts of power—enough electricity to fuel 230,000 homes in neighboring California at peak capacity. The Agua Caliente Solar Project represents a significant advance in the technology compared with just four years ago, when the largest solar facility in the U.S. generated only 20 megawatts. “Solar has completely arrived as a competitive energy resource,” says Peter Davidson, executive director of the Loan Programs Office at the U.S. Department of Energy (DoE).

The project, which cost a total of $1.8 billion to construct, received a million-dollar loan from the Loan Programs Office. Under its “SunShot” initiative (so-named in the spirit of president John F. Kennedy’s “moon shot” program), the DoE provides guaranteed loans to unproved ventures in solar power in the hopes of promoting innovation and making the technology more cost-effective.* Although Agua Caliente (owned by U.S. energy giant NRG Energy and partner MidAmerican Solar) is now the largest photovoltaic solar facility in the world, it probably will not hold that distinction for long. Other massive solar panel facilities, such as Antelope Valley Solar Ranch One in California’s Mojave Desert, are rapidly springing up across the Southwest. “This series of large plants that are being built really mark the transition from the technology being something experimental to real energy on the grid,” agrees Robert Margolis, a senior analyst at the National Renewable Energy Laboratory (NREL). Solar power currently accounts for 1 percent of U.S. energy production, but it is the fastest-growing sector of the energy landscape. Margolis says that Agua Caliente proves that investing in solar power on a large scale is an effective way to make it more viable in the current market.

The energy contained in just one hour of sunlight could power the world for a year, if only it could be harnessed. Traditional solar panels made from silicon—the gold standard of semiconducting material—are expensive, however, particularly in comparison with cheap but dirty coal and natural gas. Agua Caliente, which is operated and maintained for NRG by Tempe, Ariz.–based First Solar, uses newer, thin-film panels that that absorb the same amount of sunlight with a fraction of the material, boosting the array’s efficiency.

NRG has a deal with utility company Pacific Gas & Electric to sell them the energy generated by the plant for 25 years. California law mandates that utilities get 33 percent of their electricity from renewable sources by 2020.

The massive scale of facilities like Agua Caliente enables energy companies to buy the construction materials in bulk, which reduces costs. But there are downsides to this arrangement. The sheer magnitude of such complexes makes them difficult to maintain, and some environmental groups argue that the immense structures displace local wildlife. Many California legislators therefore prefer small-scale plants that can be built closer to the places they supply.

And as with traditional solar power plants, there is still the issue of what to do when the sky is overcast. One of the most interesting things about Agua Caliente, says John Karam, senior director of asset management at NRG Solar (an NRG subsidiary), is how it deals with cloudy days. There are extra panels built into the site, so “when the plant is partially covered by clouds, the control system can actually call upon the portion of the panels that is not impacted” and recruit the extras there to make up the difference.

“The systems are getting smarter,” NREL’s Margolis notes. “One of the next frontiers in research and development is integrating very large quantities of solar into the system by having smarter controls, and also improving the ability to forecast when clouds will come and what the behavior of the system will be so that utilities can prepare.”

Consumers won’t notice much of a difference right away, as utility companies typically draw from a wide array of energy sources, DoE’s Davidson says. “Its like pouring water into a pool: It all gets blended in and then patched out.”

But as solar power becomes cheaper, Davidson predicts that utilities will pass those savings on to consumers. And as the technological advancements emerging from megaplants like Agua Caliente become more widely available, individual solar power adopters may eventually see savings as well.

*Correction (5/9/14): This and the previous sentence have been edited since posting to correct an error. They originally stated that the Department of Energy's SunShot initiative granted the loan rather than the DoE's Loan Programs Office

Sunday, April 20, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds

April 17, 2014
A combination of advanced technologies may lead to a therapy to prevent or treat respiratory syncytial virus, a potentially lethal respiratory infection affecting infants, young children and the elderly, new research suggests. Despite a wide range of anti-RSV efforts, there are no vaccines or drugs on the market to effectively prevent or treat the infection.
Despite a wide range of anti-RSV efforts, there are no vaccines or drugs on the market to effectively prevent or treat the infection.
Now researchers at the Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School in Boston, MA, and the James A. Haley VA Hospital and the University of South Florida (USF) in Tampa, FL, have developed novel double-stapled peptides that inhibit RSV in cells and in mice. The team also showed that this peptide's capacity to block infection was significantly boosted when delivered to the lungs by miniscule, biodegradable particles known as nanoparticles.
The team's findings are reported online today in The Journal of Clinical Investigation.
RSV employs a fusion protein with a helical structure to enable the virus to bind to and penetrate epithelial cells lining the nose and lungs.
The Dana-Farber/Boston Children's/Harvard laboratory led by co-senior author Loren Walensky, MD, PhD, used their chemical strategy known as hydrocarbon stapling to make "double-stapled" RSV peptides. Stapling helps the peptides retain their natural helical shape and resist degradation by the body's enzymes while disrupting the fusion process needed for RSV to infect host cells.
The VA/USF group led by co-senior author Shyam Mohapatra, PhD, tested these double-stapled peptides, alone and in combination with propriety nanoparticles, in mice to demonstrate significant inhibition of RSV infection.
"This is an exciting advance in the fight against respiratory syncytial virus infection," said Dr. Mohapatra, director of the USF Nanomedicine Research Center and the USF Health Morsani College of Medicine's Division of Translational Medicine, and a research career scientist at James A. Haley VA Hospital.
"We found that double-stapled peptide interference targeting the virus fusion protein can be administered in the form of a nasal drop or spray. The treatment suppressed viral entry and reproduction, including spread from nose to lungs, providing substantial protection from infection when administered several days before viral exposure."
"Designing therapeutic peptides based on a virus' very own fusion apparatus was previously exploited to block HIV-1 infection, but this class of drugs was severely limited by the pharmacologic liabilities of peptides in general, including loss of bioactive structure and rapid digestion in the body," said Dr. Walensky, associate professor of pediatrics at Harvard Medical School, pediatric hematologist/oncologist at Dana-Farber/Boston Children's and principal investigator in Dana-Farber's Linde Program in Cancer Chemical Biology.
"Peptide stapling restores the natural helical shape, which also inhibits proteolysis, providing a new opportunity to take advantage of a well-validated mechanism of action to thwart viruses like RSV that otherwise lack drugs for preventing or treating infection."
Dr. Mohapatra and his team developed nose drops containing the Walensky laboratory's double-stapled peptides after combining them with TransGenex's chitosan nanoparticles that stick to mucous-producing cells lining the lungs.
First, the researchers treated mice intranasally with stapled peptide nose drops, both before and during infection with RSV. The treated mice showed significantly lower levels of virus in the nose and lungs, and less airway inflammation, compared to untreated mice.
Then, double-stapled peptides encapsulated in nanoparticles were delivered to the lungs via the trachea to test whether the combination could further increase the effectiveness of this experimental therapy. The nanoparticle preparation markedly improved delivery of the peptides to the lungs, and the combination worked better and longer in preventing RSV pneumonia than the double-stapled peptide alone.
The researchers say to the best of their knowledge this preclinical study is the first to combine peptide stapling and nanoparticle technologies to maximize the delivery, persistence, and effectiveness of an antiviral therapy.
RSV is the most common virus causing lung and airway infections in infants and young children. Most have had this infection by age 2, and it can be especially serious, even deadly, in high-risk groups, such as babies born prematurely and those whose immune systems do not work well. The virus hospitalizes thousands of infants each year for pneumonia or brochiolitis and has been associated with a significantly greater risk of developing asthma later in life. The elderly are also at high risk of complications from RSV infection.
"This is a new way forward in the development of strategies to prevent RSV infection," said Terrence Dermody, MD, the Dorothy Overall Wells professor of pediatrics and director of the Division of Pediatric Infectious Diseases at Vanderbilt University School of Medicine, who was not involved with the research. "The authors are to be complimented on the clever design, interdisciplinary approach and extension from cell-culture experiments to animal studies. I am particularly excited about the possible application of this technology to other viruses."

Story Source:  University of South Florida (USF Health)

Gecko-like adhesives now useful for real world surfaces

The ability to stick objects to a wide range of surfaces such as drywall, wood, metal and glass with a single adhesive has been the elusive goal of many research teams across the world, but now a team inventors describe a new, more versatile version of their invention, Geckskin, that can adhere strongly to a wider range of surfaces, yet releases easily, like a gecko's feet.
"Imagine sticking your tablet on a wall to watch your favorite movie and then moving it to a new location when you want, without the need for pesky holes in your painted wall," says polymer science and engineering professor Al Crosby. Geckskin is a 'gecko-like,' reusable adhesive device that they had previously demonstrated can hold heavy loads on smooth surfaces such as glass.
Crosby and polymer science researcher Dan King, with other UMass Amherst researchers including biology professor Duncan Irschick, report in the current issue of Advanced Materials how they have expanded their design theory to allow Geckskin to adhere powerfully to a wider variety of surfaces found in most homes such as drywall, and wood.
Unlike other gecko-like materials, the UMass Amherst invention does not rely on mimicking the tiny, nanoscopic hairs found on gecko feet, but rather builds on "draping adhesion," which derives from the gecko's integrated anatomical skin-tendon-bone system. As King explains, "The key to making a strong adhesive connection is to conform to a surface while still maximizing stiffness."
In Geckskin, the researchers created this ability by combining soft elastomers and ultra-stiff fabrics such as glass or carbon fiber fabrics. By "tuning" the relative stiffness of these materials, they can optimize Geckskin for a range of applications, the inventors say.
To substantiate their claims of Geckskin's properties, the UMass Amherst team compared three versions to the abilities of a living Tokay gecko on several surfaces, as described in their journal article this month. As predicted by their theory, one Geckskin version matches and even exceeds the gecko's performance on all tested surfaces.
Irschick points out, "The gecko's ability to stick to a variety of surfaces is critical for its survival, but it's equally important to be able to release and re-stick whenever it wants. Geckskin displays the same ability on different commonly used surfaces, opening up great possibilities for new technologies in the home, office or outdoors."
Crosby notes, "It's been a lot of fun thinking about all of the different things you ever would want to hang somewhere, and then doing it. Geckskin changes the way you think."
Video: http://www.youtube.com/watch?v=SayqhqTZoxI&feature=youtu.be

Wednesday, April 16, 2014

20 Cities Shining Brightest With Solar Energy

Environment America scanned the nation find out which cities are shining the brightest when it comes to solar energy.
Those cities are doing more than just leading the way—the top 20 cities contain more solar power today than the entire country had just six years ago.
Not surprisingly, you’ll see plenty of California cities in the top 20 featured in Environment America’s report, Shining Cities At the Forefront of America’s Solar Energy Revolution, released this week in several variations by the organization’s various state arms around the country.
“California cities are leaders in creating solar energy capacity,” California Sen. Marty Block, D-San Diego, said in an Environment California statement. “Of the top 20 American cities listed for this clean and safe energy alternative, California has five cities ranked in the top 12—Los Angeles, San Diego, San Jose, San Francisco and Sacramento. It’s leadership that means a cleaner environment, better jobs and a stronger economy.”
The report also includes listings of cities split into categories that extend from “beginners” to “stars.” It should be no surprise that states with politicians that tried passing anti-renewable legislation don’t contain cities that would even qualify as “beginners.” The fact that states like California have federal and state politicians willing to stand behind solar energy certainly aids in its deployment.
“Solar energy is renewable and clean, which is why I’m such an advocate for its role in our national energy portfolio,” U.S. Rep. Scott Peters, D-CA, said. “The solar industry is creating jobs, including more than 675 in my district alone and powering our economy toward a more sustainable future. I’m proud that San Diego and California are leading the way as an example for the rest of the country.”
Some cities, like New York, were pleased with their standing, but look forward to doing more.
“New York City is home to a wealth of industries and it is crucial that it continues to lead the way to nurture and build the solar industry,” said David Sandbank, vice president of New York Solar Energy Industries Association. “With the support of our state and local government officials and the creation of the NY Sun-Initiative, we are well on our way to achieving this goal.
“It is very important that we continue our momentum and create more solar jobs while reducing our carbon footprint and dependence on traditional electrical power.” 
In Ohio, where legislation to freeze renewable energy standards indefinitely is on the table, some desperately want to deploy more clean energy. Cleveland and Columbus were considered “beginners” by Environment America, while Cincinnati is considered a “builder,” ranking 24th in the nation. 
“We’ve made progress here in Columbus, but we’ve just begun,” said Ragan Davis of Environment Ohio. “By committing to bold goals and putting strong policies in place, we can make Columbus shine as a national leader and reap the environmental and economic benefits of the solar revolution.”
——–
YOU ALSO MIGHT LIKE